0 Tags
0 Shares
Directory
Discover new people, create new connections and make new friends
- Please log in to comment!
- https://en.wikipedia.org/wiki/TricksterTricksterIn mythology and the study of folklore and religion, a trickster is a character in a story (god, goddess, spirit, human or anthropomorphisation) who exhibits a great degree of intellect or secret knowledge and uses it to play tricks or otherwise disobey normal rules and defy conventional behavior. Mythology Tricksters, as archetypal characters, appear in the myths of many different cultures. Lewis Hyde describes the trickster as a "boundary-crosser". The trickster crosses and often breaks both physical and societal rules: Tricksters "violate principles of social and natural order, playfully disrupting normal life and then re-establishing it on a new basis."Often, this bending or breaking of rules takes the form of tricks or thievery. Tricksters can be cunning or foolish or both. The trickster openly questions, disrupts or mocks authority.Many cultures have tales of the trickster, a crafty being who uses tricks to get food, steal precious possessions, or simply cause mischief. In some Greek myths Hermes plays the trickster. He is the patron of thieves and the inventor of lying, a gift he passed on to Autolycus, who...EN.WIKIPEDIA.ORG0 Tags 0 Shares
- #Science_News #Science #Gravitational_microlensing
Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light (clouds of gas and dust). These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy.
When a distant star or quasar gets sufficiently aligned with a massive compact foreground object, the bending of light due to its gravitational field, as discussed by Albert Einstein in 1915, leads to two distorted images (generally unresolved), resulting in an observable magnification. The time-scale of the transient brightening depends on the mass of the foreground object as well as on the relative proper motion between the background 'source' and the foreground 'lens' object.
Ideally aligned microlensing produces a clear buffer between the radiation from the lens and source objects. It magnifies the distant source, revealing it or enhancing its size and/or brightness. It enables the study of the population of faint or dark objects such as brown dwarfs, red dwarfs, planets, white dwarfs, neutron stars, black holes, and massive compact halo objects. Such lensing works at all wavelengths, magnifying and producing a wide range of possible warping for distant source objects that emit any kind of electromagnetic radiation.
Microlensing by an isolated object was first detected in 1989. Since then, microlensing has been used to constrain the nature of the dark matter, detect exoplanets, study limb darkening in distant stars, constrain the binary star population, and constrain the structure of the Milky Way's disk. Microlensing has also been proposed as a means to find dark objects like brown dwarfs and black holes, study starspots, measure stellar rotation, and probe quasars including their accretion disks. Microlensing was used in 2018 to detect Icarus, then the most distant star ever observed.#Science_News #Science #Gravitational_microlensing Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light (clouds of gas and dust). These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy. When a distant star or quasar gets sufficiently aligned with a massive compact foreground object, the bending of light due to its gravitational field, as discussed by Albert Einstein in 1915, leads to two distorted images (generally unresolved), resulting in an observable magnification. The time-scale of the transient brightening depends on the mass of the foreground object as well as on the relative proper motion between the background 'source' and the foreground 'lens' object. Ideally aligned microlensing produces a clear buffer between the radiation from the lens and source objects. It magnifies the distant source, revealing it or enhancing its size and/or brightness. It enables the study of the population of faint or dark objects such as brown dwarfs, red dwarfs, planets, white dwarfs, neutron stars, black holes, and massive compact halo objects. Such lensing works at all wavelengths, magnifying and producing a wide range of possible warping for distant source objects that emit any kind of electromagnetic radiation. Microlensing by an isolated object was first detected in 1989. Since then, microlensing has been used to constrain the nature of the dark matter, detect exoplanets, study limb darkening in distant stars, constrain the binary star population, and constrain the structure of the Milky Way's disk. Microlensing has also been proposed as a means to find dark objects like brown dwarfs and black holes, study starspots, measure stellar rotation, and probe quasars including their accretion disks. Microlensing was used in 2018 to detect Icarus, then the most distant star ever observed.0 Tags 0 Shares - https://en.wikipedia.org/wiki/Gravitational_microlensingGravitational microlensingGravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light (clouds of gas and dust). These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy. When a distant star or quasar gets sufficiently aligned with a massive compact foreground object, the bending of light due to its gravitational field, as discussed by Albert Einstein...EN.WIKIPEDIA.ORG0 Tags 0 Shares
- https://en.wikipedia.org/wiki/Gravitational_microlensingGravitational microlensingGravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light (clouds of gas and dust). These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy. When a distant star or quasar gets sufficiently aligned with a massive compact foreground object, the bending of light due to its gravitational field, as discussed by Albert Einstein...EN.WIKIPEDIA.ORG0 Tags 0 Shares
- https://en.wikipedia.org/wiki/Gravitational_microlensingGravitational microlensingGravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light (clouds of gas and dust). These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy. When a distant star or quasar gets sufficiently aligned with a massive compact foreground object, the bending of light due to its gravitational field, as discussed by Albert Einstein...EN.WIKIPEDIA.ORG0 Tags 0 Shares
-
-
- https://en.wikipedia.org/wiki/Inverse-square_lawInverse-square lawIn science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understood as geometric dilution corresponding to point-source radiation into three-dimensional space. Radar energy expands during both the signal transmission and the reflected return, so the inverse square for both paths means that the radar will receive energy according to the inverse fourth power of the range. To prevent dilution of energy while propagating a signal, certain methods can be used such as a waveguide, which acts like a canal does for water, or how a gun barrel restricts hot gas expansion to one dimension in order to prevent loss of energy transfer to a bullet. Formula In mathematical notation the inverse square law can be expressed as an intensity (I) varying as a function of distance (d) from some centre. The intensity is proportional (see ∝) to the reciprocal of the square of the distance thus: It can also be mathematically...EN.WIKIPEDIA.ORG0 Tags 0 Shares
-